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Abstract - This paoer describes the Multiple Hy-

pothesis Network Tracker (MHNT) being developed

by BAE Systems. The goal here was to design, de-

velop and implement a tracker capable of tracking

multiple vehicles moving across a network of ge-

ographically distributed static sensors, where each

sensor’s coverage area is small compared to the dis-

tance between sensors. Each sensor reports the time

when a target crosses the sensor’s coverage area Sen-

sors may also report features associated with the tar-

get. A centralized tracker receives reports from all of

the sensors and, using prior information regarding

target motion across the network of sensors and ac-

tual travel times, assign reports to tracks and com-

putes the most likely set of assignments.

Keywords: Tracking, Network of Sensors, Distributed

Sensors, Multiple Hypothesis Tracking.

1 Introduction

In the problem at hand, we are interested in tracking
multiple targets as they move across a given area of in-
terest (AOI). Targets move along roads, and the loca-
tions of the sensors with respect to the road are known.
Sensors are sparsely distributed across the AOI. They
are fixed and static -they can not move or look into
a particular area. The sensor’s coverage area always
stays the same, and they can only detect a target when-
ever the target crosses their coverage area. They are
also able to detect the travelling direction of the tar-
get. Each sensor generates a report whenever a target
leaves its coverage area, and these reports are sent to
a central processor running the MHNT. A report con-
sists of a time stamp, a sensor ID (that also encodes
the target travelling direction, as discussed later) and
features extracted from the target.

The network tracking problem can be seen as the
dual of the standard report-to-track tracking problem
encountered in radar, sonar, video, and other sensor
domains. In the standard tracking problem, the sensor
observes the location of a target at a given time, while
in the network tracking problem, the sensor observes

the time a target crosses a given location. The fact that
time is the observed variable leads to a formulation
where the target state is time instead of position. To
further emphasize this duality, in the standard track-
ing problem there is uncertainty in the location of the
target at a given time, while in our network tracking
problem formulation there is uncertainty in the time
the target will cross a given location.

The tracking problem in this case is mainly an asso-
ciation problem: deciding which reports go with which
targets. Dynamic target models are of little use due to
the large time period between reports from the same
target with respect to the target dynamics; for exam-
ple, a target can stop and restart multiple times be-
tween observations. The target state consists of the
time and location it was last seen, the direction it was
travelling, and a feature state associated with the tar-
get. Given the fixed nature of the sensors, as well as
the prior knowledge about roads and sensor locations,
we can represent all this information using a directed
graph (see section 2). The time it takes a target to
travel from one sensor to another (which we will de-
note as the transit time) can be modelled as a random
variable with a known prior distribution. Multiple hy-
pothesis regarding report to track associations are kept
by the tracker, and this prior information is then used,
in conjunction with the actual travel times and mea-
sured features, to decide on the best set of report-to-
track associations.

The paper is organized as follows: section 2 de-
scribes how to model prior information using a con-
nectivity graph. Section 3 combines prior information
with measurements to derive the posterior probability
of a global hypothesis. Section 4 extends the global hy-
pothesis posterior probability computation to include
false alarms and missed detections. Section 5 describes
the technique used to maintain multiple global hy-
potheses in real time. The last section (6) deals with
the use of a scoring mechanism between reports.
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2 The observer connectivity
graph

In the MHNT formulation, all prior information re-
garding roads, sensor locations, target motion, traf-
fic patterns, and sensor performance is represented
through the observer connectivity graph. The observer
connectivity graph is a directed graph consisting of
nodes and links that connect two nodes. Being a di-
rected graph, each link has a direction associated with
it.

Sensors are represented by one or more nodes in the
graph. A sensor and a travelling direction in the sen-
sor’s coverage area are represented by a unique node.
This node is called an “observer”. As a target moves
along the roads, from one sensor location to another,
following a particular road in a given direction, in our
mathematical model the target moves from one ob-
server to another“through” a particular directed link.
For the tracker, reports are generated by observers,
not sensors, therefore there is an implicit location and
travelling directions associated with each report. The
tracker itself does not know anything about sensors,
roads and traffic; it only knows about observers, links,
and parameters or functions associated with those.
In our current implementation, all parameters asso-
ciated with the observer graph are estimated online
from measured traffic densities and estimated transit
times (derived from report associations produced by
the tracker).

2.1 Observer characterization

As mentioned before, each observer is associated with
a travelling direction in a sensor’s coverage area. In or-
der to characterize the sensor’s performance in terms of
detecting targets crossing its coverage area, two param-
eters are needed: the false alarm rate and the probabil-
ity of missed detection. The false alarm rate, in targets
per second, is the number of reports per unit time gen-
erated by the observer in the absence of real targets.
The probability of missed detection is the probability
that the sensor will miss reporting on a real target
crossing its coverage area.

The other parameter associated with an observer
has to do with traffic characterization: the observer’s
birth rate. The birth rate is the number of new targets
per second expected to be seen by the observer. New
targets are defined as those targets that have not been
seen by any other observer previously. The observer’s
birth rate parameter provides a means of estimating
the rate at which targets enter the AOI, e.g.: entry
gates, roads that are not being monitored, parking lots,
etc.

2.2 Link characterization

In the observer connectivity graph, nodes are con-
nected to each other via directional links A link be-
tween two observers in the graph represents a piece of
road (and a travelling direction on that road) between
two sensors. A link between two observers represents
the fact that a target can travel from the up-stream

observer to the down-stream observer without crossing
any other observer’s coverage area. Generally, a link
may represent more than one actual path between the
observers. A target travelling through this link takes a
certain amount of time to go from one end to the other
(up-stream observer to down-stream observer). This
travel time will be represented by a random variable
with a given probability density function (pdf). This
pdf represents the behavior of all targets instead of be-
ing associated with a particular target. The other pa-
rameter associated with a link is its probability. Given
a non-trivial road network, there are, in general, mul-
tiple roads a target can take after crossing a particular
sensor. The link’s probability represent the fraction
of the entering traffic that goes through the link and
cross the sensor’s coverage area at the other end of the
link. The probability that a target will stop after hav-
ing gone through an observer and before crossing any
other observers is equal to:

P{stop after obs. i} = p̄i = 1−
∑

∀j

P{linki,j}(1)

where the sum is over all links originating at the ith

observer. The stop probability represents the proba-
bility that a target may stop along the road, may enter
a parking lot, may exit the AOI, etc.

An example of a network of sensors, roads and the
corresponding observer connectivity graph is shown in
Figure 1. In this case, there are three sensors, Sen-
sor 1, Sensor 2 and Sensor 3 , and for each of these
we define two observers, one for each travelling direc-
tion. The associated observer connectivity graph has
6 nodes, one for each observer, as shown in the bottom
part of the same figure.
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Figure 1: A simple example illustrating the relation-
ship between sensors, roads, and the observer connec-
tivity graph.



3 Global hypothesis posterior
probability

As mentioned before, the goal of the tracker is to as-
sign reports to tracks in some optimal way. In the case
of a multiple hypothesis tracker, we will evaluate and
keep multiple feasible assignments. A set of assign-
ments such that every report gets assigned to one and
only one track is usually denoted as a global hypoth-
esis. Due to the combinatorial nature of the problem,
and in order to have a real-time tracker, there is a
need to limit the number of feasible assignments for
a given report. The assignments corresponding to the
global hypothesis with the maximum posterior proba-
bility represents the best track estimates at the current
time.

Conditioned on our observation set, we wish to
choose the most probable global hypothesis. The pos-
terior probability of a global hypothesis will be de-
noted by P{Hi|Y }, where Hi is a feasible report-to-
track assignment global hypothesis, and Y is the set
of all reports received up to a particular time (Y :
{R1, R2, ..., RN}). Although not explicitly shown,
prior information regarding traffic, roads, and cam-
era locations -as contained in the observer graph- is
assumed to be known and available.

We start by re-writing the posterior probability of a
global hypothesis in terms of the a-priori probabilities
of all feasible global hypotheses P{Hj}. The posterior
probability of the ith global hypothesis, Hi, given the
observation set Y is:

P{Hi|Y } =
P{Hi, Y }

P{Y } =
P{Y |Hi}P{Hi}

P{Y } (2)

Note that, in the absence of false alarms and missed
detections, and due to the fact that there is no obser-
vation error, P{Y |Hi} = 1 for each Hi in the set of
feasible global hypotheses (i.e., a global hypothesis is a
collection of individual tracks, and given a track, there
is only one set of feasible measurements). Handling of
false and missed detection will be included in section
(4). The probability of getting a measurement set Y
is:

P{Y } =
∑

all feasible Hj

P{Y |Hj}P{Hj} (3)

Replacing eqn. 3 in eqn. 2, we get:

P{Hi|Y } =
P{Hi}∑

all feasible Hj
P{Hj} (4)

The function of the tracker is to choose a value for i
that maximizes the above expression. To do this, we
must specify first how to compute the a-priori probabil-
ity of a global hypothesis. Next, we look at the individ-
ual events that form a global hypothesis, including the
target birth probability (see subsection 3.1), the transit
time between observers ( subsection 3.2) and the prob-
ability of not having seen the target (subsection 3.3).
We can then compute the prior probability (subsection
3.4) and the posterior probability (subsection 3.5) of a
global hypothesis.

3.1 Target birth probabilities

Let us assume that, for any given observer, the proba-
bility of k new target births in a time interval T is given
by a Poisson distribution (see [1]) with parameter equal
to the birth rate λB of that particular observer:

P{k new targets in interval T} =
(λB T )k

k!
e−λBT

(5)
The probability of a single target birth in an in-

finitesimally small time interval dt is given by:

P{one new target in interval dt} = (λB dt) e−λB dt

(6)
Setting k = 0, the probability of no target births during
a time interval t2 − t1 is given by:

P{no new targets in interval (t2 − t1)} = e−λB(t2−t1)

(7)
We can now calculate the probability of the target births
assumed by any global hypothesis by considering each
observer separately. We let λB(j) denote the target
birth rate at the jth observer. The global hypothesis
assumes that certain reports are from new targets (tar-
get births). In particular, for jth observer, the first
birth occurs at time tj,1, second birth at time tj,2, and
so on.

Given that our observers are reporting from time
0 to time t, and noting that target births at each ob-
server are independent from one observer to the next,
we can write the probability of the target birth scenario
assumed by the ith global hypothesis for all observers
as follows:

P{birth scenario in ith global hypothesis}

=
V∏

j=1


 e−λB(j)tj,1︸ ︷︷ ︸

Time to first birth

λB(j) dt e−λB(j)dt

︸ ︷︷ ︸
first birth

∏NBj

k=2


e−λB(j)(tj,k−tj,k−1−dt)︸ ︷︷ ︸

time between births

λB(j) dt e−λB(j)dt

︸ ︷︷ ︸
kth birth




e−λB(j)(t−tj,NBj
−dt)

︸ ︷︷ ︸
time from last birth




(8)
where

- V : the number of observers,

- NBj : the number of target births assumed to have
occurred at the jth observer, occurring at times tj,k
, k = 1 : NBj

The term e−λB(j)dt cancels out with the term e+λB(j)dt,
and given that the birth terms do not depend on k, we
can rewrite the above as:

P{birth scenario in ith global hypothesis}

= (dt)NB

V∏

j=1

λB(j)NBj e−λB(j) t (9)

where NB =
∑V

j=1 NBj denotes the total number of
target births assumed by the ith global hypothesis.



The next step is to model the probabilities associated
with transit times between observers and the probability
of not having seen the target since its last observation.

3.2 Transit time probabilities

We start by defining the pdf of the time at which the
target passes observer j as a function of the time it
passed observer i, as well as other road/traffic param-
eters. In particular, we assume that this density func-
tion is stationary -i.e., it does not depend on the spe-
cific times but instead depends on the time difference
(transit time). We characterize the transit time density
function between a pair (i, j) of observers by a shifter
one-sided pdf, with a minimum transit time denoted by
τmin
ij and an average transit time denoted by τavr

ij .
The minimum transit time has a direct impact on

the “early-gate” function, limiting the number of hy-
potheses generated by discarding “early” reports, while
the average transit time has a direct impact on the
value of the probability, as well as on the “late” gate.
In the tracker implementation, we used the same pdf
function (with different parameters) for all links. The
function was selected based on a good fit to the transit
time data we had collected, as well as the fact that it
should have an easy to compute cumulative function
(see subsection 3.3).

The pdf functions that models the transit time be-
tween observers i and j will be denoted by fij(τ),
and the corresponding cumulative density function by
Fij(τ)

The probability of a target travelling from observer
j to observer i in (τk) is approximately given by:

P{traveling from observer j to i in τk sec} ≈ fij(τk)dt
(10)

This equation is used to compute the total probability
associated with the transit times postulated by a global
hypothesis. Given a global hypothesis, let NT be the
number of tracks in the hypothesis. Suppose there are
Rj + 1 reports assigned to the jth track including the
original report in which the target was born. Then,
there are Rj transit times for the jth track, and conse-
quently, a total of NA =

∑NT

j=1 Rj transit times in the
global hypothesis. Assuming that the density function
of each transit time is independent of the others, the
probability of the observed transit times in the global
hypothesis is:

P{ (τ1, . . . , τNA
) transit times} =

NA∏
n=1

fin−1,in
(τn)dt

= (dt)NA

NA∏
n=1

fin−1,in
(τn) (11)

where

- in−1 and in denote respectively the observers of
the reports n− 1 and n,

- τn is the time difference between the times of the
reports n− 1 and n,

- fin−1,in(·) is the transit time pdf for the nth re-
port assignment with appropriate parameters cho-
sen based on the time of the n−1th report, the time

of the nth report and the link parameters between
the observers in−1 and in.

3.3 Probability of Not Seen Yet (NSY)

We now consider the probability of not having seen a
particular target since the last observation, as assumed
by a given global hypothesis. In particular, let observer
i be the last observer that has seen the target accord-
ing to a global hypothesis. Let observer j be located
downstream from observer i in the observer connec-
tivity graph. The probability of the target not seen yet
(NSY) by observer j at the current time t is then given
by

P{target Not Seen Yet at time t} = 1− Fij(t)

where Fij()̇ represents the cumulative density function
of the transit time distribution between observers i and
j. This probability is represented by the shaded area in
Figure 2.
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)(pdf τij

ε

Figure 2: Top: Probability density function for transit
time between observers i and j. Bottom: Probability
of target ”not seen yet” at time tk by observer j.

By considering all the links the target could have fol-
lowed after passing observer i, and the a-priori prob-
ability of the target following each of these links, as
well as the probability of the target stoping/leaving be-
fore reaching any of the down-stream observers, we can
write the probability of a target not having been seen yet
at time t as follows:

P{NSY(t)} = p̄i +
∑

j∈Oi

pij(1− Fij(t)) (12)

where:

- p̄i is the probability that the vehicle stopped or ex-
ited from the camera network after passing through
observer i

- pij is the a-priori probability of the target following
link (i, j)



- Oi is the set of all observers located ’down-the-
road’ (downstream) from observer i as defined by
the links in the observer connectivity graph.

We note here that: p̄i +
∑

j∈Oi
pij = 1, reflecting the

fact that we have enumerated all the possible outcomes
of a vehicle having passed the ith observer.

We can now write the probability of not having seen
any of the targets since their last observation by the
system. Assuming that the global hypothesis contains
NT tracks and the current time is, this probability is
given by:

P{targets in a global hypothesis NSY at time t}

=
NT∏

k=1


p̄lk +

∑

j∈Olk

plk,j(1− Flk,j(t))


 (13)

where

- lk denote the observer that generated the latest re-
port associated with track k,

- Flk,j(·) represent the cumulative density function
of the transit time from observer lk to a down-
stream observer j.

3.4 Global hypothesis a-priori proba-
bility

We can now write the a-priori probability of the ith

global hypothesis by decomposing the global into the
three components we have just covered: births, tran-
sit times and NSY’s. Combining the probability of the
birth scenario [equation (9)], the probabilities of the
transit times corresponding to the hypotheses’s report
assignments [equation (11)], and the probability of not
having seen the targets since their last sighting [equa-
tion (13)], we have:

P{Hi} = (dt)NB

V∏

j=1

λB(j)NBj e−λB(j) t

︸ ︷︷ ︸
target births

(dt)NA

NA∏
n=1

fin−1,in
(τn)

︸ ︷︷ ︸
report assignments

NT∏

k=1


p̄lk +

∑

j∈Olk

plk,j(1− Flk,j(t))




︸ ︷︷ ︸
not seen yet

(14)

We note that the total number of reports, R =
NA + NB, including those representing target births
and additional report assignments, is the same for all
global hypotheses. We can regroup the different terms
in the above expression into a part that is the same for
all global hypotheses and a part that is a function of
the particular global hypothesis:

P{Hi} = (dt)R
V∏

j=1

e−λB(j) t

︸ ︷︷ ︸
Hypothesis independent

V∏

j=1

λB(j)NBj

NA∏
n=1

fin−1,in(τn)

NT∏

k=1


p̄lk +

∑

j∈Olk

plk,j(1− Flk,j(t))


 (15)

3.5 Global hypothesis posterior prob-
ability

Recalling equation 4, we have:

P{Hi|Y } =
P{Hi}∑NG

j=1 P{Hj}
(16)

where NG is the total number of feasible global hypothe-
ses. Letting

C = (dt)R
V∏

j=1

e−λB(j)(t) (17)

and

Di =
NB∏
n=1

λBobs(n)
NA∏

k=1

fin−1,in(τn)

NT∏

k=1


p̄lk +

∑

j∈Olk

plk,j(1− Flk,j(t))


 (18)

then posterior probability of the ith global hypothesis
conditioned on the measurements is given by:

P{Hi|Y } =
C Di∑NG

m=1 C Dm

=
Di∑NG

m=1 Dm

(19)

Dropping the denominator which is common to all fea-
sible global hypotheses, the best global hypothesis Hi is
selected based on the following condition

Di ≥ Dj ∀j (20)

4 False alarms and missed de-
tections

In the first part of this section we extend the global hy-
pothesis posterior probability calculations to include the
possibility that a report is a false alarm, and therefore
does not associated with any target. In order to include
this possible explanation for a report, we need to first
formulate a model for false alarm generation (observer
dependent) and then derive the corresponding probabil-
ities.

In the second part of this section we extend the global
hypothesis probability calculations to include the fact
that some of the observers may miss reporting a vehicle
when it crosses their coverage area. In order to han-
dle possible missed reports, the tracker should look at
“incomplete” track hypothesis (incomplete in the sense
that a track may ’skip’ an observer). The probability of
a global hypothesis that includes missed reports should
be modified accordingly, as shown in subsection (4.2).



4.1 False alarms

Individual false alarm reports are not different from
reports generated by a real target (if they were differ-
ent, then it would be possible to filter them out). Is
only when looking at the track level (a collection of re-
ports) that the differences manifest: false alarms do
not ’travel’ across the network of sensors as a real tar-
gets do, so we expect false alarms to be uncorrelated in
time.

Assuming that the false alarms generated by each
observer can be modelled as a Poisson process uncor-
related across observers, we can the use target’s birth
model derived in section 3.1 to model the false alarm
generation process. Denoting by {Y1 : YNF A} the set
of reports assumed to be false alarms by hypothesis Hi,
then the probability of this set of false alarms is given
by:

P{false alarms } = (dt)NF A

V∏

j=1

λFA(j)NF A(j) e−λF A(j) t

(21)
where

- NFA : number of false alarms postulated by hy-
pothesis Hi

- λFA(j :false alarm rate of observer j (in reports
per second)

- NFA(j) : number of false alarms assigned to ob-
server j

4.2 Missed detections

As mentioned above, sometimes an observer will fail to
report a vehicle crossing its coverage area; for exam-
ple, the vehicle is obscured by another vehicle, or two
consecutive vehicles are reported as a single one due
to the finite resolution of the sensor. Irrespective of
the cause that makes the sensor fail to report, this phe-
nomenon can be characterized by a probability of miss
detection associated with each observer. Missed detec-
tions have two main implications in the formulation of
the tracker:

• when gating a report with existing tracks, the
tracker should now look beyond the immediate up-
stream observers. Until now, the tracker would
gate a report against those tracks whose last re-
port originated at the parent observers. Now ,
the tracker should look also among those tracks
where the last report originated at the grandpar-
ents, grand-grandparents, and so on (assuming
that a track could have multiple consecutive and
nonconsecutive misses).

• when computing the probability that a target has
not been seen yet by the “down-stream” observers,
the tracker should consider the possibility that the
vehicle has passed the down-stream observer, but
the observer has missed to report it and the vehi-
cle has not yet reached the next observer. Same
logic should be extended to possible multiple down-
stream misses.

4.3 Global hypothesis posterior proba-
bility including missed detections

As mentioned before, the global hypothesis probability
can be computed by evaluating the probability of each
of the tracks included in that global. If the current
report, reported by observer k at time tk gates with
a track whose last report corresponds to observer i at
time ti, and if there is no direct link between observers
k and i, but there is a path involving multiple links and
observers, then the contribution of the current report
to the track probability is given by:

P{report tk continuation of track from report at ti}

= fequiv
i,k (tk − ti) pk,k−1

i∏

j=k−1

pmiss(obs(j)) pj,j−1 (22)

It should be noted that there may be multiple paths
between any two non-consecutive observers. If the re-
port gates with a track through more than one path,
then the path with the highest combined probability
(eqn. 22) will be selected for that hypothesis.

4.3.1 Probability of NSY calculation in the
presence of miss detections

Both gating and transit time probability calculations in-
volve looking backwards (or up-stream) on the observer
connectivity graph. To compute the probability of NSY,
the tracker needs to look forward (or down-stream) on
the graph. Equation (12 ) shows the probability of
not having seen a track at time t without considering
missed detections. When an observer may fail to re-
port the target, then, in addition to considering that
the target stopped after the last report’s observer, or
have not yet reached any of the children observers, we
need to consider the possibility that the target did reach
one of the children observers but was not reported, and
either stopped after that or has not reached any of the
grand children observers. In this case, the probability
of not having-seen-yet the target should be modified as
follows:

P{NSY (t)} =

p̄obs(k) +
∑

j (childs of obs(k))
pk,j (1− Fk,j(t− tk))

+
∑

j (childs of obs(k))
pk,jFk,j(t− tk)pmiss(obs(j))


p̄obs(j) +

∑

l (childs of obs(j))
pj,l (1− Fj,l(t− tk))




The previous reasoning can be extended in a recur-
sive way to include all of the observers down-stream
from the current report’s observer. The last term (be-
tween parenthesis) should be extended to include the
probability of missed detection of the child observers of
observer(j), and so on.



5 Multiple hypothesis tree
management: the track forest

Tracks, both resolved and unresolved portions, are
stored in a track forest. A forest is a structure that
contains many trees, each with its own root node. Each
node, other than a root node, is an instance of a report
being hypothetically assigned to a track. Root nodes
represent targets. A root node originally represents a
new target starting with a single report. The root node
is unresolved when it is created. When a root node is
permanently declared as a new target, the root node be-
comes a resolved target node. Over time, as unresolved
nodes become resolved, they are collapsed into the re-
solved root node of the target tree. The rest of the tree
represents the unresolved portion of the target.

5.1 Track trees

Using Figure 3 as an illustration, we will explore the
meaning of the track trees. The diagram is divided into
four quadrants representing the trees after four reports
are adde, one at a time. The portion of the tree cre-
ated during the addition of the current report is shown
in green. Report 1 (R1) is added as a root node in
quadrant 1. The node has an identifier (a node ID),
T1, or track 1. It is an unresolved root node of a tar-
get tree. In quadrant 2, assuming that report R2 gates
with track T1, two nodes are added. Node T2 (track 2)
represents a track that has R1 and R2 in it. Node T1
still represents the same thing as in the previous sec-
tion, namely, a track with only one report, R1, in it.
We also add the new unresolved target track root node
T3, representing the possibility that report R2 was the
beginning of a new target track. Continuing likewise in
quadrant 3, we also assume that report R3 gates with
all existing tracks. This will not be true in general,
but we use this assumption for illustration of the track
branching. R3 now appears in four new track nodes,
including a new target in the node labelled track T6.
Each track node where R3 appears represents a track
that includes all ancestor nodes going back to the root.
For example, the track T7 contains all three reports,
R1, R2 and R3. Likewise, quadrant 4 shows the tree
after adding report R4.

5.2 Global hypothesis list

A global hypothesis is a set of tracks satisfying the con-
dition that all reports received by the tracker are as-
signed to exactly one track. Recall that each report
generates a root unresolved target track node and a
number of track nodes descended from existing track
nodes. When a report is added to the track tree the
global hypotheses are augmented and branched as fol-
lows:

1. Branching step: For each track (known as the par-
ent track) that the report gates with (including re-
solved tracks), and for all global hypotheses that
the track was in, a new global hypothesis is cre-
ated in which the child track replaces the parent
track.
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Figure 3: Track hypothesis tree growth as consecutive
measurements are incorporated (the assumption here
is that each report gates will all existing tracks, in a
real situation this will not be true and the growth of
the tree will be smaller than shown).

2. Augmentation step: The new hypothetical root
target track is added to all the original global hy-
potheses that were around before the branching
step.

We will now show the branching and augmentation
steps for the same example shown in Figure (3). The
tracker is initialized with a single empty global hypoth-
esis. When the first report, R1 is added, there are no
tracks in existence for it to gate with so the branching
step is empty. The new unresolved target track, T1 is
added to the single global hypothesis in the augmenta-
tion step. When the next report, R2, arrives and is
added to the tree, the global hypothesis evolves into two
global hypotheses. The first one is generated by adding
a branch to the original global hypothesis (branching
step). This hypothesis assumes that report R1 and
R2 belong to the same target (track T2). The sec-
ond hypothesis is generated by augmenting the original
hypothesis with a new track T3 (augmentation step).
This hypothesis assumes that reports R1 and R2 be-
long to two different targets (tracks T1 and T3). Since
R3 gates with three existing tracks, each one in a sin-
gle global hypothesis, three new global hypotheses are
added in the branching step. The two pre-existing hy-
potheses are then augmented with the addition of track
T6. Report R4 is then added using the same branching
and augmentation algorithm, producing a total of fif-
teen global hypotheses. The above global hypothesis set



update process can be summarized as follows (where
each global hypothesis is denoted by the tracks that be-
longs to it enclosed in {}):
1. Report #1 added

- Augmentation: {T1}
2. Report #2 added

- Augmentation: {T1,T3}
- Branching: {T2}

3. Report #3 added
- Branching: {T4,T3}, {T1,T6}, {T5}
- Augmentation: {T1,T3,T7}, {T2,T7}

4. Report #4 added
- Branching: {T11,T3}, {T4,T10},
{T8,T6}, {T1,T13}, {T12} {T8,T3,T7},
{T1,T10,T7}, {T1,T3,T14}, {T9,T7},
{T2,T14}

- Augmentation: {T4,T3, T15},
{T1,T6,T15}, {T5,T15} {T1,T3,T7,T15},
{T2,T7,T15}

5.3 Global Hypothesis based pruning

It is well known, and also easy to see, that a Multiple
Hypothesis Tracker like the one previously discussed
needs some form of “hypothesis grow” control in or-
der to be feasible to implement it in real time. In our
case, we have implemented an adaptive pruning strat-
egy that allows real time implementation while maxi-
mizing use of available cpu. The idea is to predict how
long it will take to process a new measurement given
the current track tree status. This is done after gat-
ing the new report with all feasible existing tracks, and
deriving a relationship between the number of global
hypothesis that need to be modified and the cpu time
required for that. The parameters for this cpu time
model are estimated on-line based on previous perfor-
mance measurements. The predicted required time is
then compared with the available time (computed based
on the inter-report arrival time). If the predicted time
is larger than the available time, then a fixed fraction
of the less likely global hypotheses are discarded and all
tracks that are not used by any of the remaining global
hypotheses are pruned. This method has proven to be
very robust. It has been tested in multiple cpu’s with
different processing speeds, and has always been able to
maintain real time operation (over multiple days) with
almost full utilization of available cpu (95% or higher).
A different approach, based on track-tree pruning in-
duced by resolving the oldest reports has shown lower
performance than the global hypothesis based pruning.

6 Features and scores

Certain sensors are able to measure features in ad-
dition to the report’s time. These features are mod-
elled using a Gaussian state vector and Gaussian noise,
and a standard Kalman filter is used to compute the
measurement update likelihood. This likelihood is then
combined with the kinematic likelihood to become the
track likelihood.

But sometimes features are not well modelled by
simple Gaussian models, and the “sensor” experts are
more willing to compare two reports and give some
kind of same/different measurement than to provide
a Gaussian feature measurement and feature model.
In our tracker formulation, we require that the an-
swer to a comparison request between two reports
be the likelihood that both reports originated from
the same target (p(report 1,report 2|same)) and the
likelihood that both reports originated from different
targets(p(report 1,report 2|different)). This new infor-
mation regarding these two reports can now be used
directly in the calculation of the track likelihood. For
each global hypothesis, check whether both reports are
in the same or different tracks (some global hypotheses
will hypothesize that both reports are from the same
target, and therefore both reports will be assigned to
the same track, while other global hypotheses will as-
sume that they are from different targets,and therefore
the reports will be assigned to different tracks). The
likelihood of every global where the reports are in the
same track should be multiplied by the following likeli-
hood ratio

L(report 1,report 2) =
p(report 1,report 2|same)

p(report 1,report 2|different)

This can be done in an asynchronous mode, where the
tracker request scores between a new report and reports
belonging to tracks that gated with the new reports.
It then continues to process other reports, and when
the score likelihoods become available, they are included
into the likelihood of each global.

7 Conclusions

In this paper we have formulated a tracker that works
with reports generated by a distributed network of sen-
sors. The use of prior information (road network,
transit times) as well as the use of negative informa-
tion (probability of not-seen-yet) makes the formula-
tion unique and quite different from other more com-
mon tracking problems like the radar or sonar tracking
problems. Our approach to multiple hypothesis is also
different from the most commonly used optimization-
based techniques that estimate the single best global hy-
pothesis. This tracker has been implemented in a real
system with thirty sensors and up to five reports per
second using a standard PC with acceptable results.
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